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This paper describes the use of an unsteady fluid-structure interaction (FSI) tool as an investigative tool into the cause 

of the dismasting of the VOR 70 Groupama 4. As more than one rig component failed during the dismasting, the cause 

of failure was not immediately apparent. The investigation therefore required isolating the cause of failure between two 

closely related rig components. The FSI coupling process and the determination of the initial rig loading based on a 

steady FSI computation and measured data will be described. The setup for two unsteady failure cases will be discussed 

and the results of those investigations will be examined. 

 

 

NOMENCLATURE 

���  Damping matrix 
��
���   (N.s.m-1) 

���  Stiffness matrix 
��
��  (N.m-1) 

�	�        Mass matrix 
��
��
   (kg) 

R  Residual force (N) 

u  Position (m) 

��   Velocity (m.s-1) 

�
     Acceleration (m.s-2) 

�

��  Incident flow velocity (m.s-1) 

�

��   Doublet induced velocity (m.s-1) 

�

��  Wake induced velocity (m.s-1) 

���   Vortex particle position (m) 

Ω

��   Vortex  particle vorticity (s-1) 

 

1   INTRODUCTION 

 

The 2011-2012 edition of the Volvo Ocean Race was 

notable for the number of rig failures that occurred 

during the course of the race.  The cause of the 

dismasting of Groupama 4 on the leg between Auckland 

and Itajai in calm seas and moderate breeze was not 

immediately apparent based on examination of the 

recovered pieces, as more than one secondary structural 

member had failed during the dismasting.  In particular, 

it was necessary to determine if the mast failure was due 

to the port side D1 or the port side first spreader failing. 

The determination of the cause of the failure therefore 

necessitated that an investigative structural analysis be 

performed.  To perform such an analysis would require 

that a detailed structural model of the rig and sails be 

utilized in conjunction with an accurate description of the 

static and aerodynamic structural loads.  ARAVANTI, 

the tool utilized, is composed of ARA, an unsteady, finite 

element structural solver capable of being tightly coupled 

to AVANTI, an unsteady potential flow solver or ISIS-

CFD, an unsteady RANS solver [1, 2].  In the present 

study, the need for a rapid determination of the cause of 

failure and the sailing angle at the time of failure justified 

the use of the unsteady potential solver for the 

determination of aerodynamic loads.  The structural 

model of the rig utilized was developed as part of a prior 

study, and hence could rapidly be brought to bear on the 

problem.  While failure analysis is most often performed 

utilizing normal finite element structural software, this 

approach has a number of drawbacks.  Specifically, the 

aerodynamic loads at the time of failure must either be 

estimated by the structural engineer or determined from 

an aerodynamic solver separately and then inputted into 

the structural solver.  Furthermore, as the sail shape will 

change during the course of the failure; a significant 

drawback of this approach is that it is unable to account 

for changes in the aerodynamic loads over the course of 

the rig failure. 

 

2  FLUID SOLVER 

 

The flow code utilized in the present study, AVANTI is 

based on the assumptions that underpin potential flow; 

namely that  the flow is incompressible, irrotational, and 

inviscid.  The code combines a constant-strength, doublet 

surface representation of the bodies with a vortex particle 

method for the wake [3, 4].  The flow problem is thus 

broken down into two components: 

• A lifting body problem based on a boundary 

integral; 

• A wake problem in which vortex carrying 

particles in a Lagrangian framework are 

advected downstream in the wake. 

 

Hence, AVANTI represents the flow field as the sum of 

the contribution of three components: 

1) �

��, the incident flow velocity; 

2) �

��, the contribution induced due to the surface 

doublets; 

3) �

��, the contribution due to the vortex particles. 

 

The vorticity of the individual particles must satisfy the 

Helmholtz equation.  The equations for a particle i in the 

Lagrangian coordinate system, with the position of the 



particle given as  Xi and the particle vorticity given by 

Ωi,  are therefore: 
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The principle advantage of using a vortex particle 

method over a panel wake method is the avoidance of 

wake panels intersecting one another during unsteady 

computations.   

 

3 STRUCTURAL SOLVER 

 

The unsteady finite element structural solver ARA, was 

developed by K-Epsilon as part of the project VOILE-

NAV specifically with the aim of simulating the dynamic 

behaviour of sailboat rig [2, 5, 6].  To capture the 

unsteady behaviour in a time accurate manner, a 

Newmark-Bossak second-order accurate time scheme is 

used.  The scheme is utilized because it provides the 

necessary filtering of non-physical high frequencies 

while maintaining an accurate description of the low 

frequencies.  The scheme is conservative and hence 

avoids the generation of numerical energy in the case of 

very large nonlinearities.  At each time step an 

equilibrium between the internal and external forces on 

all of the elements is required.  To achieve this, the 

derivative of the forces with respect to the position, 

velocity, and acceleration of each element's nodes is 

found. The derivatives are then assembled into a mass 

matrix [M], damping matrix [D] and stiffness matrix [K]. 

The assembled matrix system of the form below is then 

solved utilizing the Newton-Raphson method after 

further rearrangement to be in a form suitable for the 

Newmark-Bossak scheme. 

 

4 = �	��
 + ����� + ���� 

 

The rig and sails can be represented by membrane, shell, 

beam and cable elements.  Sliding and contact elements 

are also implemented utilizing a penalization method.  In 

the present study, membrane elements were utilized for 

the sails with beam elements for the mast, boom and 

spreaders. The beam elements utilized are shear-

deformable Timoshenko beam elements.  The membrane 

elements utilized are constant strain triangle (CST) 

elements suitable for large deformations.  The stiffness 

matrix for the CST elements is found from the 

summation of the local stiffness properties of each ply 

used to fabricate the sail at that location.  The local 

stiffness of each ply is determined from the density, 

orientation and stiffness of the fibres utilized in that 

region.  The stiffness matrix of each element is thus able 

to account for the anisotropic material properties of  

competitive sail manufacturing techniques such as 3DI©, 

3DL©, and D4© as well as local reinforcement patches. 

 

4 FLUID-STRUCTURE COUPLING 

 

Sails, are light structures where the entrained added mass 

of the air is of comparable or greater size to the mass of 

the sails themselves. This poses a particularly difficult 

case for unsteady FSI coupling schemes.  The strong 

coupling between the fluid and structure requires that the 

coupling scheme has a tight coupling between the 

structure and fluid solvers.  The coupling scheme utilized 

is a quasi-monolithic approach. It is based on an implicit, 

partitioned solver approach, but maintains the 

convergence and stability of a fully monolithic approach.   

This is achieved by utilizing an additional interface 

element in the structural solver derived from the Jacobian 

matrix of the interface. In the case of an exact Jacobian 

matrix, the coupling matrix is identical to that of a 

monolithic approach.  In the present approach, a 

simplified Jacobian is computed.  The Jacobian matrix 

allows the elimination of the use of under-relaxation, 

yielding a significant reduction in the number of 

coupling iterations required.  The coupling process is 

outlined in figure 1 below.  At each time step an FSI loop 

is started by first updating the wake particle positions and 

then computing the Jacobian matrix.  A structural 

computation is then performed to convergence and the 

motions are transferred to the fluid solver. This is then 

followed by a fluid computation, after which 

convergence of the coupling is checked. If convergence 

has not been achieved the fluid forces are transferred 

back across the interface and the structural computation 

is repeated.  Hence, fluid-structure convergence is 

achieved at each time step. 

 

 
Figure 1: ARAVANTI unsteady FSI loop 

 

 

 



5 STEADY CASE SETUP AND RESULTS 

 

In order to perform the FSI computation, an accurate 

description of both the rig and the loads is required.  As 

mentioned before, the structural properties and geometry 

of the rig and sails were developed before the current 

study as part of an earlier study.  To replicate the 

structural loading at the time of failure, both the static 

and aerodynamic structural loads needed to be imposed.  

The static structural loads consisted primarily of the 

tensions applied to the shrouds.   The initial tensions 

applied were taken from the measured dock tune 

tensions. 

 

The aerodynamic loading was generated by a steady FSI 

computation based on the measured yacht and wind 

conditions at the time of the failure. These conditions are 

given in table 1. 

 

Boat speed 12 knots 

True wind speed 21 knots 

Heel angle 22° 

Heading Close reach 

Table 1: Sailing conditions 

 

In order to obtain the  correct aerodynamic loads, three 

criteria had to be met: 

1) The sails had to be trimmed to a realistic setting 

for the given wind conditions and boat speed. 

2) The forestay had to have a tension of 10 tons. 

3) The heeling moment generated had to match the 

righting moment. 

 

To achieve these aims, the jib was first trimmed 

optimally. The main sail was then used to achieve the 

correct heeling moment.  The resulting steady loads are 

given in table 2.  

 

Rig 

component 

Line/Port side 

tension 

(kN) 

Starboard side 

tension 

(kN) 

V1 137.3 65.2 

V2 107.1 63.5 

V3 94.4 63.6 

D1 49.4 10.0 

D2 31.3 1.8 

D3 13.1 0 

D4 94.6 64.0 

Runner - 87.3 

Forestay 105.0 - 

Main halyard 31.0 - 

Main sheet 29.2 - 

Jib halyard 47.4 - 

Jib sheet 21.5 - 

Table 2: Steady shroud, sheet and halyard tensions 

 

6 UNSTEADY SETUP AND RESULTS 

 

The resulting sail flying shape and deformed shape of the 

rig from the steady computation was utilized for the 

initial shape and stresses of the unsteady computations.  

In order to model the sudden failure of a rig component, 

the member was made to no longer carry structural loads. 

This was accomplished for the D1 by changing the cable 

length to be very large such that it could no longer be 

under tension.  The spreader failure was modelled by 

changing the element stiffness to 0, such that it no longer 

resisted applied loads.  Failure of structural members was 

assessed based on the stress exceeding the ultimate 

strength of the member.  As ARAVANTI does not have a 

built in capability to represent the effect of the failure of 

a structural element, if an element was determined to 

have failed, the computation was repeated with that 

element having its failure imposed at the time it exceeded 

its ultimate strength.  The resulting time histories of the 

mast bending moments and deflections were then utilized 

to determine the mast failure point. 

 

Three unsteady computations were performed as part of 

the study : 

1. A computation where the port side D1 is made 

to fail. 

2. A computation where the port side first spreader 

is made to fail. 

3. A computation where the port side first spreader 

is made to fail and after which the port side D1 

is made to fail 0.116 s later. 

 

The third computation was performed based on feedback 

from the structural engineer, who indicated a failure 

should occur then.  For the present paper, the results of 

the first and third computations will be presented.  It 

should be noted that the D1 case also leads to the 

eventual failure of the first spreader.  However, a D1 

computation with an imposed failure of the spreader was 

not performed as the conclusion as to the cause of failure 

had already been drawn and such a computation would 

have required a slight modification to the way 

ARAVANTI stores beam stiffness properties to 

accommodate such a case. For reasons of confidentiality, 

the correct failure case cannot be identified, but a number 

of results related to the two failure cases can be given. 

Both cases are given with the initial failure occurring at 

t= 0 s. 

 

6.1 SHROUD TENSIONS 

 

The time histories of the tensions in the shrouds 

following the failure of the D1 are shown in figure 2.  

The loss of tension in the port D1 is visible at t= 0 s.   

The tensions undergo a rapid change immediately 

following the prescribed failure of the port D1, with an 

increase in tension on the starboard side and decrease in 

tension on the port side.  The tensions then begin to 

gradually increase for the port side V1 and D2 while 

decreasing for all of the starboard side elements as the 

mast and spreaders continue to deflect.  The port D3 and 

starboard D1 are rapidly unloaded until slack, with the 

starboard D2 following soon thereafter.  
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Figure 7: Time lapse of the mast failure, D1 case 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Time lapse of the mast failure, Spreader case 

 

 


